Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 6(4)2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30360505

RESUMO

Gastrointestinal infection with Shiga toxin-producing Escherichia coli (STEC) causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS), characterized by hemolytic anemia, thrombocytopenia and acute renal failure. The main virulence factor of STEC is Shiga toxin (Stx), which is responsible for HUS development. STEC can produce Stx type 1 and/or 2 (Stx1, Stx2) and their variants, Stx2 being more frequently associated with severe cases of HUS. This pathology occurs in 5⁻15% of cases with STEC infection when Stx gain access to the bloodstream and causes damage in the target organs such as the kidney and brain. STEC infections affect mainly young children, although the large HUS outbreak with a new Stx2-producing STEC O104:H4 in Europe in 2011 involved more adults than children, and women were over-represented. Maternal infections during pregnancy are associated with adverse pregnancy outcomes. Studies in rats showed that Stx2 binds to the utero-placental unit and causes adverse pregnancy outcomes. In this article, we provide a brief overview of Stx2 action on placental tissues and discuss whether they might cause pregnancy loss or preterm birth.

2.
Reproduction ; 150(6): 463-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26347521

RESUMO

Prematurity is the leading cause of perinatal morbidity and mortality worldwide. There is a strong causal relationship between infection and preterm births. Intrauterine infection elicits an immune response involving the release of inflammatory mediators like cytokines and prostaglandins (PG) that trigger uterine contractions and parturition events. Anandamide (AEA) is an endogenous ligand for the cannabinoid receptors CB1 and CB2. Similarly to PG, endocannabinoids are implicated in different aspects of reproduction, such as maintenance of pregnancy and parturition. Little is known about the involvement of endocannabinoids on the onset of labor in an infectious milieu. Here, using a mouse model of preterm labor induced by lipopolysaccharide (LPS), we explored changes on the expression of components of endocannabinoid system (ECS). We have also determined whether AEA and CB antagonists alter PG production that induces labor. We observed an increase in uterine N-acylphosphatidylethanolamine-specific phospholipase D expression (NAPE-PLD, the enzyme that synthesizes AEA) upon LPS treatment. Activity of catabolic enzyme fatty acid amide hydrolase (FAAH) did not change significantly. In addition, we also found that LPS modulated uterine cannabinoid receptors expression by downregulating Cb2 mRNA levels and upregulating CB1 protein expression. Furthermore, LPS and AEA induced PGF2a augmentation, and this was reversed by antagonizing CB1 receptor. Collectively, our results suggest that ECS may be involved in the mechanism by which infection causes preterm birth.


Assuntos
Endocanabinoides/metabolismo , Lipopolissacarídeos , Trabalho de Parto Prematuro/metabolismo , Útero/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Dinoprosta/metabolismo , Modelos Animais de Doenças , Endocanabinoides/genética , Feminino , Regulação da Expressão Gênica , Idade Gestacional , Camundongos Endogâmicos BALB C , Trabalho de Parto Prematuro/induzido quimicamente , Trabalho de Parto Prematuro/genética , Trabalho de Parto Prematuro/fisiopatologia , Fosfolipase D/genética , Fosfolipase D/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Gravidez , Progesterona/sangue , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Fatores de Tempo , Útero/efeitos dos fármacos , Útero/fisiopatologia
3.
Curr Pharm Des ; 20(29): 4741-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24588830

RESUMO

Preterm birth is the leading cause of perinatal morbidity and mortality. Pathological processes that have been linked with preterm birth infection and / or intrauterine inflammation are most frequently found associated with their induction. Studies in animal models and human research showed prior infections to the induction of labor, the anteriority of infection over labor induction, and the existence of a subclinical latency phase between these two phenomena. The ascending route from the vagina and the cervix is preponderant but also microorganisms may access the amniotic cavity and the fetus by other pathways. During inflammation associated to infection, Prostaglandins are released simultaneously with Nitric oxide and their overproduction could be detrimental. Prostaglandins promote uterine contractions contributing to embryonic and fetal expulsion. Therefore aberrant activation of the inflammatory response may cause premature labor and this does not seem to depend on how the microoorganisms accessed the uterus.


Assuntos
Infecções Bacterianas/fisiopatologia , Inflamação/fisiopatologia , Trabalho de Parto Prematuro , Animais , Feminino , Humanos , Recém-Nascido , Modelos Animais , Gravidez
4.
Mol Hum Reprod ; 20(1): 89-99, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23907162

RESUMO

Sperm capacitation has been largely associated with an increase in cAMP, although its relevance in the underlying mechanisms of this maturation process remains elusive. Increasing evidence shows that the extrusion of cAMP through multidrug resistance associated protein 4 (MRP4) regulates cell homeostasis not only in physiological but also in pathophysiological situations and studies from our laboratory strongly support this assumption. In the present work we sought to establish the role of cAMP efflux in the regulation of sperm capacitation. Sperm capacitation was performed in vitro by exposing bovine spermatozoa to bicarbonate 40 and 70 mM; cAMP; probenecid (a MRPs general inhibitor) and an adenosine type 1 receptor (A1 adenosine receptor) selective antagonist (DPCPX). Capacitation was assessed by chlortetracycline assay and lysophosphatidylcholine-induced acrosome reaction assessed by PSA-FITC staining. Intracellular and extracellular cAMP was measured by radiobinding the regulatory subunit of PKA under the same experimental conditions. MRP4 was detected by western blot and immunohistochemistry assays. Results showed that the inhibition of soluble adenylyl cyclase significantly inhibited bicarbonate-induced sperm capacitation. Furthermore, in the presence of 40 and 70 mM bicarbonate bovine spermatozoa synthesized and extruded cAMP. Interestingly, in the absence of IBMX (a PDEs inhibitor) cAMP efflux still operated in sperm cells, suggesting that cAMP extrusion would be a physiological process in the spermatozoa complementary to the action of PDE. Blockade of MRPs by probenecid abolished the efflux of the cyclic nucleotide resulting not only in the accumulation of intracellular cAMP but also in the inhibition of bicarbonate-induced sperm capacitation. The effect of probenecid was abolished by exposing sperm cells to cAMP. The high-affinity efflux pump for cAMP, MRP4 was expressed in bovine spermatozoa and localized to the midpiece of the tail as previously reported for soluble adenylyl cyclase and A1 adenosine receptor. Additionally, blockade of A1 adenosine receptor abolished not only bicarbonate-induced sperm capacitation but also that stimulated by cAMP. Present findings strongly support that cAMP efflux, presumably through MRP4, and the activation of A1 adenosine receptor regulate some events associated with bicarbonate-induced sperm capacitation, and further suggest a paracrine and/or autocrine role for cAMP.


Assuntos
AMP Cíclico/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Receptor A1 de Adenosina/metabolismo , Capacitação Espermática/efeitos dos fármacos , Espermatozoides/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Adenosina/química , Antagonistas do Receptor A1 de Adenosina/farmacologia , Inibidores de Adenilil Ciclases , Animais , Bicarbonatos/farmacologia , Transporte Biológico , Bovinos , Humanos , Masculino , Inibidores de Fosfodiesterase/farmacologia , Probenecid/farmacologia , Motilidade dos Espermatozoides , Xantinas/farmacologia
5.
Br J Pharmacol ; 168(4): 946-53, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23043728

RESUMO

BACKGROUND AND PURPOSE: Infections with a strain of Escherichia coli producing Shiga toxins could be one of the causes of fetal morbidity and mortality in pregnant women. We have previously reported that Shiga toxin type 2 (Stx2) induces preterm delivery in pregnant rats. In this study, we evaluate the role of TNF-α, PGs and NO in the Stx2-induced preterm delivery. EXPERIMENTAL APPROACH: Pregnant rats were treated with Stx2 (0.7 ng g(-1)) and killed at different times after treatment. Placenta and decidua were used to analyse NOS activity by the conversion of L-[(14)C]arginine into L-[(14)C]citrulline, levels of PGE(2) and PGF(2α) assessed by radioimmunoassay, and cyclooxygenase (COX) proteins by Western blot. TNF-α level was analysed in serum by ELISA and by cytotoxicity in L929 cells. The inhibitor of inducible NOS, aminoguanidine, the COX-2 inhibitor, meloxicam, and the competitive inhibitor of TNF-α, etanercept, were used alone or combined to inhibit NO, PGs and TNF-α production respectively, to prevent Stx2-induced preterm delivery. KEY RESULTS: Stx2 increased placental PGE(2) and decidual PGF(2α) levels as well as COX-2 expression in both tissues. Aminoguanidine and meloxicam delayed the preterm delivery time but did not prevent it. Etanercept blocked the TNF-α increase after Stx2 treatment and reduced the preterm delivery by approximately 30%. The combined action of aminoguanidine and etanercept prevented Stx2-induced preterm delivery by roughly 70%. CONCLUSION AND IMPLICATIONS: Our results demonstrate that the increased TNF-α and NO induced by Stx2 were the predominant factors responsible for preterm delivery in rats.


Assuntos
Dinoprosta/biossíntese , Dinoprostona/biossíntese , Nascimento Prematuro/induzido quimicamente , Toxina Shiga II/toxicidade , Fator de Necrose Tumoral alfa/sangue , Animais , Ciclo-Oxigenase 2/biossíntese , Decídua/efeitos dos fármacos , Decídua/enzimologia , Decídua/metabolismo , Quimioterapia Combinada , Etanercepte , Feminino , Guanidinas/administração & dosagem , Guanidinas/uso terapêutico , Imunoglobulina G/administração & dosagem , Imunoglobulina G/uso terapêutico , Óxido Nítrico/biossíntese , Placenta/efeitos dos fármacos , Placenta/enzimologia , Placenta/metabolismo , Gravidez , Nascimento Prematuro/sangue , Nascimento Prematuro/metabolismo , Nascimento Prematuro/prevenção & controle , Ratos , Ratos Sprague-Dawley , Receptores do Fator de Necrose Tumoral/administração & dosagem , Receptores do Fator de Necrose Tumoral/uso terapêutico
6.
PLoS One ; 7(9): e46059, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029388

RESUMO

Bioactive lipid molecules as lysophosphatidic acid (LPA), prostaglandins (PG) and endocannabinoids are important mediators of embryo implantation. Based on previous published data we became interested in studying the interaction between these three groups of lipid derivatives in the rat uterus during the window of implantation. Thus, we adopted a pharmacological approach in vitro using LPA, DGPP (a selective antagonist of LPA3, an LPA receptor), endocannabinoids' receptor selective antagonists (AM251 and AM630) and non selective (indomethacin) and selective (NS-398) inhibitors of cyclooxygenase-1 and 2 enzymes. Cyclooxygenase isoforms participate in prostaglandins' synthesis. The incubation of the uterus from rats pregnant on day 5 of gestation (implantation window) with LPA augmented the activity and the expression of fatty acid amide hydrolase, the main enzyme involved in the degradation of endocannabinoids in the rodent uteri, suggesting that LPA decreased endocannabinoids' levels during embryo implantation. It has been reported that high endocannabinoids are deleterious for implantation. Also, LPA increased PGE2 production and cyclooxygenase-2 expression. The incubation of LPA with indomethacin or NS-398 reversed the increment in PGE2 production, suggesting that cyclooxygenase-2 was the isoform involved in LPA effect. PGs are important mediators of decidualization and vascularization at the implantation sites. All these effects were mediated by LPA3, as the incubation with DGPP completely reversed LPA stimulatory actions. Besides, we also observed that endocannabinoids mediated the stimulatory effect of LPA on cyclooxygenase-2 derived PGE2 production, as the incubation of LPA with AM251 or AM630 completely reversed LPA effect. Also, LPA augmented via LPA3 decidualization and vascularization markers. Overall, the results presented here demonstrate the participation of LPA3 in the process of implantation through the interaction with other groups of lipid molecules, prostaglandins and endocannabinoids, which prepare the uterine milieu for embryo invasion during the window of implantation.


Assuntos
Implantação do Embrião , Endocanabinoides/metabolismo , Lisofosfolipídeos/metabolismo , Prostaglandinas/metabolismo , Amidoidrolases/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Feminino , Diester Fosfórico Hidrolases/análise , Diester Fosfórico Hidrolases/metabolismo , Gravidez , Ratos , Ratos Wistar , Receptores de Ácidos Lisofosfatídicos/análise , Receptores de Ácidos Lisofosfatídicos/metabolismo , Útero/irrigação sanguínea , Útero/metabolismo
7.
PLoS One ; 6(4): e18368, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21559512

RESUMO

Nitric oxide production, catalyzed by nitric oxide synthase (NOS), should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19±0.01 pmoles L-citrulline mg prot(-1) h(-1)) compared to days 4 (0.34±0.03) and 5 (0.35±0.02) of pregnancy and to day 6 implantation sites (0.33±0.01). This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA), an endocannabinoid, binds to cannabinoid receptors type 1 (CB1) and type 2 (CB2), and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA) and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70±0.02 vs 0.40±0.04) and URB-597 (1.08±0.09 vs 0.83±0.06) inhibited NOS activity in the absence of a blastocyst (pseudopregnancy) through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25±0.04 vs 0.40±0.05). While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17±0.02 vs 0.27±0.02), a CB2 antagonist decreased it (0.17±0.02 vs 0.12±0.01). Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These data establish cannabinoid receptors as an interesting target for the treatment of implantation deficiencies.


Assuntos
Ácidos Araquidônicos/farmacologia , Blastocisto/citologia , Blastocisto/fisiologia , Óxido Nítrico Sintase/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Útero/efeitos dos fármacos , Útero/enzimologia , Animais , Benzamidas/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Carbamatos/farmacologia , Implantação do Embrião , Endocanabinoides , Feminino , Imuno-Histoquímica/métodos , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
8.
PLoS One ; 5(12): e15127, 2010 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-21206910

RESUMO

Shiga toxin-producing Escherichia coli (STEC) infections could be one of the causes of fetal morbimortality in pregnant women. The main virulence factors of STEC are Shiga toxin type 1 and/or 2 (Stx1, Stx2). We previously reported that intraperitoneal (i.p.) injection of rats in the late stage of pregnancy with culture supernatant from recombinant E. coli expressing Stx2 and containing lipopolysaccharide (LPS) induces premature delivery of dead fetuses. It has been reported that LPS may combine with Stx2 to facilitate vascular injury, which may in turn lead to an overproduction of nitric oxide (NO). The aim of this study was to evaluate whether NO is involved in the effects of Stx2 on pregnancy. Pregnant rats were i.p. injected with culture supernatant from recombinant E. coli containing Stx2 and LPS (sStx2) on day 15 of gestation. In addition, some rats were injected with aminoguanidine (AG), an inducible isoform inhibitor of NO synthase (iNOS), 24 h before and 4 h after sStx2 injection. NO production was measured by NOS activity and iNOS expression by Western blot analysis. A significant increase in NO production and a high iNOS expression was observed in placental tissues from rats injected with sStx2 containing 0.7 ng and 2 ng Stx2/g body weight and killed 12 h after injection. AG caused a significant reduction of sStx2 effects on the feto-maternal unit, but did not prevent premature delivery. Placental tissues from rats treated with AG and sStx2 presented normal histology that was indistinguishable from the controls. Our results reveal that Stx2-induced placental damage and fetus mortality is mediated by an increase in NO production and that AG is able to completely reverse the Stx2 damages in placental tissues, but not to prevent premature delivery, thus suggesting other mechanisms not yet determined could be involved.


Assuntos
Óxido Nítrico/química , Toxina Shiga II/metabolismo , Animais , Peso Corporal , Chlorocebus aethiops , Escherichia coli/metabolismo , Feminino , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Placenta/metabolismo , Gravidez , Isoformas de Proteínas , Ratos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...